Free open Job in Wales Multiscale Deformation Modelling of Small Scale Mechanical Tests at Swansea University

Start date: October 2019 

Supervisor: Dr W Harrison and Professor S Brown 

One of the aims of the Prosperity Partnership project is to accurately evaluate the mechanical properties of a large number of steels from small scale tests. An important aspect of mechanical behaviour during steel making is anisotropic yield and work-hardening caused by rolling processes. Both hot and cold rolling result in metallurgical texture which affects mechanical properties and subsequent forming processes. This is a particular issue for thin sheet steels used for metal forming such as deep drawing grades. 

As the size of the deforming material becomes smaller, the influence of microstructure becomes greater and continuum modelling approaches become less accurate. Modelling deformation of the microstructure using crystal plasticity finite element modelling (CPFEM) allows predictions of anisotropic deformation and damage to be made. 

A continuum modelling approach is already being used in the Prosperity Partnership however, combining CPFEM with continuum deformation models for small scale mechanical tests such as small punch and shear compression will allow a more accurate evaluation of micromechanical behaviour. These models can then be applied to larger scale deformation processes such as rolling using a multiscale approach which can then be applied to larger scale deformation. 

The primary aim of the project is to develop a CPFEM model for specific grades of steel. The model will be validated against small scale test data, using a multiscale approach based on representative volume elements (RVEs) with microstructural data such as grain and phase morphology. This approach will be used to predict damage in small scale tests as well as being used to evaluate the evolution of anisotropy during single and multi-stage deformation. The aim will be to ultimately apply the model to different sized rolling geometries, allowing predictions of the effects of scaling up the rolling processes. Initially the model will be applied to deformation at ambient temperature, with scope to extend to higher temperatures later. The multiscale approach will complement continuum models being developed as part of the Prosperity Partnership. 

Eligibility

We welcome applications from candidates with an Engineering or Physical Science degree (minimum level 2:1), or a combination of degree and equivalent relevant experience to the same level, to join the M2A community of research engineers. 

Please visit our website for more information on eligibility.

LEAVE A REPLY

Please enter your comment!
Please enter your name here